If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x=12-x^2
We move all terms to the left:
15x-(12-x^2)=0
We get rid of parentheses
x^2+15x-12=0
a = 1; b = 15; c = -12;
Δ = b2-4ac
Δ = 152-4·1·(-12)
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{273}}{2*1}=\frac{-15-\sqrt{273}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{273}}{2*1}=\frac{-15+\sqrt{273}}{2} $
| -2-3x=4x-2 | | 7(x+5)=35-x | | 2x÷3=-2 | | 5(2-3X)+4=14-14x | | 5-2r=12 | | x+1.78=7.87 | | h^23h-180=0 | | 1.2(x=1.3)=2.4 | | h23h-180=0 | | F(x)=-5x^2+40x+73 | | 28-3x=5(x-3) | | C(120)=0.65x+4 | | x-1.58=2.52 | | -60+12b=48 | | 91.6x+288.2=7205-196.6x | | 27^3x−7=9^6x−1 | | 8x+121=3 | | y=20-10y-7 | | 1036=y-825 | | 5+4m=-15 | | 15=2^3x | | y=-5(-2)+9 | | 3x-19=-2x+1 | | (6x+5)=(7x+4) | | 2-a/4=6 | | h=17+-18/6 | | 4f=1f-6 | | y=4(9)-2 | | 6h-14=5h+4 | | 0=9b+-18 | | 40+16.25x+8.50x=16 | | 4x+11=88-3x |